
THE ASTROPHYSICAL JOURNAL, 536 :465È480, 2000 June 10
2000. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

A MULTIGROUP METHOD FOR RADIATION WITH SCATTERING IN THREE-DIMENSIONAL
HYDRODYNAMIC SIMULATIONS

R. SKARTLIEN1
Institute of Theoretical Astrophysics, P.O. Box 1029, Blindern, NÈ0315 Oslo, Norway

Received 1999 November 10 ; accepted 2000 January 26

ABSTRACT
Substantial approximations in the treatment of radiation are still necessary in three-dimensional simu-

lations in order to avoid extremely large computational costs. Solar radiation hydrodynamic simulations
in three dimensions have previously assumed local thermodynamic equilibrium (LTE) ; an assumption
that works well in the deep photosphere. This work aims at bringing these simulations a step further by
including scattered radiation, with the goal of modeling chromospheres in three dimensions. We allow
for coherent isotropic scattering, which alters the thermal structure and wave amplitudes in the chromo-
sphere. Group mean opacity coefficients are used in group mean source functions that contain approx-
imate scattering terms and exact contributions from thermal emissivity. The resulting three-dimensional
scattering problem allows for a computationally efficient solution by a new iteration method. We have
compared exact wavelength-integrated monochromatic solutions with the corresponding approximate
solutions for solar conditions. We Ðnd that the total Ñux divergence obtained from the groups deviates
less than 10% from the exact solution. When using these groups rather than the full monochromatic
solution, the CPU time is reduced by a factor of about 100 in a test case for solar conditions.
Subject headings : hydrodynamics È methods : numerical È radiative transfer È Sun: atmosphere È

Sun: granulation

1. INTRODUCTION

Radiation is important for the structure and dynamics of
stellar atmospheres through its inÑuence on the energy, ion-
ization, and momentum balance. For the solar case, the
radiative Ñux divergence is the dominant term in the energy
balance, while the radiation force in the momentum balance
can be neglected.

Radiation has previously been treated assuming LTE
(local thermodynamic equilibrium) in solar three-
dimensional or two-dimensional simulations (e.g., Nor-
dlund 1982 ; Ste†en & Muchmore 1988 ; Steiner et al. 1998).
The solar LTE convection simulations of Nordlund and
Stein (e.g., Nordlund 1982 ; Nordlund & Stein 1990) provide
excellent agreement with the observed granular structure
(Stein & Nordlund 1989 ; Spruit, Nordlund, & Title 1990 ;
Nordlund & Stein 1991). We would infer, therefore, that the
e†ect of radiative cooling on convection dynamics is suffi-
ciently described when radiation is treated in LTE.

To study the dynamic inÑuence from the convection zone
on the convectively stable atmosphere above, we need to
extend these convection simulations by including the
chromospheric layers. In these layers, the radiation is
neither optically thin nor optically thick and LTE fails com-
pletely. The radiation couples regions far apart and we have
to solve a complex nonlocal, nonlinear problem. The self-
consistent chromospheric non-LTE (NLTE) radiation
hydrodynamics problem is solvable in plane-parallel atmo-
spheres with present-day computers if only a few ions are
treated simultaneously (Carlsson & Stein 1992, 1997).

It is obvious that we need simplifying assumptions in
three-dimensions such that the problem becomes computa-
tionally and practically tractable on current computers.
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This paper describes the radiation method we use in
extended solar convection-atmosphere simulations
(Skartlien 1998 ; Skartlien, Stein, & Nordlund 2000), but the
same concepts are applicable generally to simulations of
other astrophysical objects.

The Ðrst simplifying assumption we make is that the
opacity is independent of the radiation Ðeld, such that it can
be calculated in thermodynamic equilibrium (from the
Boltzmann-Saha equations) and not from the rate equa-
tions as in NLTE.

We include scattering, but we assume that the scattering
process is coherent and isotropic. In this case, photons do
not change wavelength and can be scattered in any direc-
tion with equal probability in the scattering event. This is
the second approximation.

By using group mean opacities (e.g., Mihalas & Mihalas
1984), we solve a limited number of scattering problems
rather than the full set of monochromatic scattering prob-
lems. This is the third approximation since group mean
opacities do not produce the exact solution of the problem.

To make use of these three approximations we need to
have a way of constructing group mean opacities that pre-
serves the main properties of the radiation problem (like
total radiative Ñux divergence). We also need to develop an
efficient iteration scheme for the solution of the scattering
problem in each opacity group. These two issues are
addressed in this paper.

The most restrictive of the approximations above is prob-
ably that of coherent scattering. We know that coherent
scattering is a poor approximation in the cores of spectral
lines where complete frequency redistribution is a much
better description. Moreover, the approximation of coher-
ent scattering gives an e†ective thermalization depth of

where v is the e†ective destruction probabilityL thB v~1@2,
in a spectral line. This is to be compared with the larger
thermalization depth in the case of complete fre-L thB v~1
quency redistribution in a Doppler broadened line in a
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static atmosphere (e.g., Mihalas 1978). If Doppler shifts
caused by macroscopic velocity Ðelds are taken into
account, the thermalization depth may be even larger.

Despite these shortcomings, we still make the approx-
imation of coherent scattering because of computational
reasons. As we shall see, coherent scattering makes it pos-
sible to devise a method that takes into account scattering
e†ects with only a modest increase in computational e†ort
as compared with LTE (a factor D5). The more realistic
case of complete frequency redistribution, on the other
hand, would need a large number of frequency points, with
an increase in computational e†ort by at least a factor of
100.

In ° 2, we formulate the radiation problem to be solved.
The multigroup method and the iteration method are devel-
oped in ° 3. We describe how the methods are applied to a
solar convection and atmosphere simulation in ° 4. Using
these simulations, we calculate the errors introduced by
using group mean opacities in ° 5. We also compare the
group mean opacity method to a previous LTE method.
The results are summarized in ° 6.

2. FORMULATION OF THE PROBLEM

This section deÐnes the monochromatic, coherent and
isotropic scattering problem. This deÐnes our fundamental
problem, which we will solve approximately by using group
mean opacities. We also establish our notation in this
section.

2.1. L T E Opacity and Photon Destruction Probability
We assume that the opacities can be obtained from

atomic-level population densities calculated from the
Boltzmann/Saha equations. The opacity in this case is
therefore only dependent on local quantities, e.g., tem-
perature and density. We denote this approximation as
LTE-opacity. This approximation will be valid when the
population densities are controlled mainly by collisions (as
in the deep photosphere) but also when dealing with reso-
nance lines of majority ionization stages (such as the Lyman
lines of neutral hydrogen and the H and K resonance lines
from singly ionized calcium).

The monochromatic opacity is split into an absorptionsjopacity which includes all processes that convertij,photons to thermal energy, and a scattering opacity pj,which includes only scattering processes that do not convert
photons to thermal energy. The total monochromatic
opacity is

sj \ ij ] pj ,

with units of cross section per volume, cm2 cm~3. For nota-
tional clarity, we have omitted the general direction depen-
dency resulting from, e.g., Doppler shifts of opacity proÐles.
The scattering and absorption opacities have contributions
from line and continuum processes

pj\ pjl ] pjc ,

and

ij\ ijl ] ijc .

We deÐne the photon destruction probability as the prob-
ability of absorption once a photon interacts with lines or

continua :

vj \ ij
sj

\ sjl vjl ] ijc
sj

.

Here, is the photon destruction probability in lines,vjlwhich is deÐned as the probability of absorption once a
photon interacts with an atomic transition :

vjl \ijl
sjl

,

where is the line opacity.sjl \ ijl ] pjl

2.2. Source Function with Coherent Isotropic Scattering
We include nonlocal e†ects only in the radiation trans-

port (not the opacity) by allowing for scattered radiation in
the gas emissivity in addition to thermally generated emiss-
ivity. We can write the general angular dependent emissivity
as

gj(X) \
P
j@

P
)@

R(X, X@ ; j, j@)Ij{(X@)d)@ dj@] ij(X)Bj ,

where X is the unit vector along the solid angle ), R(X,
X@ ; j, j@) is the redistribution function in angle and wave-
length, the speciÐc intensity, the absorptionIj{(X@) ij(X)
opacity, and the Planck distribution.BjWe now assume that the velocity Ðelds are negligible,
such that the opacity contributions are direction indepen-
dent. We further assume that the scattering processes are
coherent and isotropic. We note that coherency implies no
leakage of photons between di†erent wavelength bands.
This can be represented formally by the redistribution func-
tion

R(X, X@ ; j, j@) \ R(j, j@) \pj{
4n

d(j [ j@) ,

where represents the isotropic (uniform) angularpj{/4n
redistribution and the Dirac delta function d(j [ j@) coher-
ency (no wavelength shift in the scattering process). With
these assumptions, the emissivity becomes

gj\ pj
4n
P
)@

Ij(X@)d)@] ij Bj \ pjJj] ij Bj , (1)

where is the mean intensity. By deÐnition, the sourceJjfunction is the ratio between emissivity and opacity :

Sj4
gj
sj

\pj
sj

Jj] ij
sj

Bj\ (1[ vj)Jj ] vj Bj , (2)

where we have used the deÐnition of photon destruction
probability.

2.3. Transfer Equation, Flux Divergence, and
L ambda Operator

In cases where typical gas velocities are small compared
to the speed of light, the transport equation reads

LIj
Lr

\ gj [ sj Ij , (3)

where r is the geometrical distance in the direction of Ij.Here we have omitted the angular dependency of forIj
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clarity. This is an integrodi†erential equation for our scat-
tering problem since the emissivity is dependent on the
angle-integrated intensity by equation (1). Note the funda-
mental di†erence for the LTE/no-scattering case where the
transport equation is simply a Ðrst-order di†erential equa-
tion with no coupling to other rays.

The radiative Ñux divergence we need for the energy
equation is obtained from angle and wavelength integration
of the transport equation (eq. [3]) :

$ Æ F \
P
j

P
)

LIj
Lr

d) dj \
P
j

P
)
(gj [ sj Ij)d) dj . (4)

In our case, for isotropic opacity and emissivity we get,
when integrating over solid angle,

$ Æ F \ 4n
P
j
gj [ sj Jj dj \ 4n

P
j
sj(Sj[ Jj)dj .

2.3.1. T he Problem as an Integral Equation

Using the transport equation, it can be shown (Rybicki
1984) that the mean intensity is given by

Jj(r)\ "(sj)[Sj]\
P
V
Sj(r@)Kj(r, r@)d3r@ ,

where the kernel function K that deÐnes the "-operator is
given by

Kj(r, r@)\ sj(r@)
4nl2 exp ([*qj) , (5)

where l\ o r [ r@ o is the distance from the point r where the
mean intensity is evaluated to an arbitrary point r@. The
corresponding optical path length between these points is
given by

*qj \
P
0

lsj(r@)dl . (6)

We see that the kernel is small for optically thick media. For
larger optical path lengths, the kernel spans larger volumes
and the mean intensity is nonlocally determined.

We can formulate the radiation problem as an integral
equation in the source function (Fredholm equation of the
second kind) by using our deÐnition of the source function
in equation (2) and the lambda operator :

Sj\ (1[ vj)"(sj)[Sj]] vj Bj . (7)

This equation is linear since the opacity used in the lambda
operator is independent of the radiation Ðeld (the solution).
In principle, we could solve this equation numerically by
representing the lambda operator as a matrix. The matrix
would consist of the discretized kernel function and include
N2 elements where N is the number of grid points. A serious
problem arises in three dimensions. For a simulation with
100 grid points in each direction, we would have to deal
with N \ 106 unknowns and N2\ 1012 matrix elements.
The intractable size of the matrix is the reason for using
iterative methods.

We note that a large number of wavelength points are
needed for an accurate evaluation of the radiative Ñux
divergence in equation (4). Each wavelength point needs a
solution of a problem equivalent to the integral equation,
and it is prohibitive to solve this scattering problem at

several hundred wavelength points per time step in simula-
tions. This is the reason for using group mean opacities,
which reduce computer time by a factor of typically 100, at
the expense of a less accurate solution.

3. METHODS OF SOLUTION

First, we develop the multigroup method, then the iter-
ation scheme; Ðnally, we compare the new iteration method
with existing methods.

3.1. T he Multigroup Method
3.1.1. Determination of Groups

We follow the group deÐnition of Nordlund (1982). The
atmospheric height range is divided into a chosen number
of intervals. A set of wavelengths belong to the same group
if the associated monochromatic optical depths are unity
within the same height interval. This deÐnition serves to
sort wavelength points with similar shapes of the kernel
function into the same group. Furthermore, strong lines fall
within one group corresponding to high layers, and the
continua fall within one group corresponding to deeper
layers.

SpeciÐcally, the height scale is chosen as a standard
optical depth along the vertical direction rather than geo-
metrical height. The standard and monochromatic optical
depths can be calculated in the plane-parallel atmosphere of
the mean model (horizontally and temporally averaged).
The group number i for monochromatic wavelength j is
determined by

i \ Int
Glog [q0(qj \ 1)]

* log (q)
H

] const. ,

where ““ Int ÏÏ means nearest integer value, is theq0(qj \ 1)
standard optical depth where the monochromatic optical
depth is unity, and *log(q) depends on the number of
groups chosen.

We will calculate integrals over wavelength within each
group as follows. The set of wavelengths that belongs toj

jgroup i is denoted by This set need not be continuous,*j
i
.

since wavelengths in the infrared and ultraviolet can be
included in the same group, while a wavelength in the
visible can be included in another group. An integration
within each group can be carried out also in this case. This
is implemented numerically as a quadrature sum:

Y
i
\ ;

*ji
Yjj wj

,

where and are the wavelength quadrature points andj
j

w
jweights, respectively, and an arbitrary wavelength-Yjjdependent quantity. In the following, we denote this quad-

rature sum by the notation of continuous integrals :

Y
i
\
P
*ji

Yj dj .

3.1.2. Exact Solution

Here we derive the exact transport equation for the
wavelength-integrated intensity within a wavelength group.
The result cannot be used in practice to solve for the
wavelength-integrated intensity, since it involves knowledge
of the monochromatic radiation Ðeld, which we will not
solve for. The derivation is made to arrive at approximate
solutions that can be used without having knowledge of the
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monochromatic radiation Ðeld. Integration of the mono-
chromatic transport equation (eq. [3]) over the subset of
wavelengths gives*j

i
P
*ji

LIj
Lr

dj \
P
*ji

(pjJj] ij Bj [ sj Ij)dj .

Here we have used equation (1) for the monochromatic
emissivity. We use the following notation for the integrated
transport equation :

LI
i

Lr
\ p

i
J J

i
] i

i
BB

i
[ s

i
I I

i
. (8)

The integrated intensity is

I
i
\
P
*ji

Ij dj ,

the integrated mean intensity is

J
i
\
P
*ji

Jj dj

\ 1
4n
P
*ji

P
)
Ij d) dj \ 1

4n
P
)
I
i
d) ,

and the integrated Planck distribution is

B
i
\
P
*ji

Bj dj .

The following deÐnitions satisfy equation (8) for withI
i

J
iand in the emissivity term. The group mean scatteringB

iopacity is

p
i
J \ /*ji pj Jj dj

J
i

, (9)

which is dependent on the unknown The Planck meanJj.absorption opacity is

i
i
B\ /*ji ij Bj dj

B
i

. (10)

The group mean opacity that deÐnes the mean optical path
lengths for equation (8) is

s
i
I \ /*ji sj Ij dj

I
i

. (11)

This opacity is direction dependent because of the direction
dependency of furthermore, it is dependent on theIj ;
unknown Ij.The group mean source function for this problem follows
from the ratio between group mean emissivity and group
mean opacity from equation (8). Hence,

S
i
\ p

i
J J

i
] i

i
BB

i
s
i
I

.

Equation (8) results in a lambda operator for the kernelJ
i
,

of which is a function only (analogous to eq. [5]), andofs
i
I

that acts on S
i
:

J
i
\ "(s

i
I)[S

i
] .

3.1.3. Approximate Solution in the Streaming Regime

In regions where radiation is nondi†usive (streaming
regime), we have to solve the transport equation to account

for nonlocal radiation coupling within the gas. The scat-
tering opacity (eq. [9]) and total opacity (eq. [11]) inp

i
J s

i
I

the exact transport equation (eq. [8]) cannot be precalculat-
ed without knowledge of the monochromatic intensity Ij.Instead, we use the monochromatic radiation Ðeld from the
same scattering problem from the plane-parallel version of
the atmosphere. This is a one-time computation and it is
also relatively fast. We get the one dimensional intensity Ijppand mean intensity where ““ pp ÏÏ denotes ““ plane paral-Jjpp,lel.ÏÏ Both of these quantities are a function of atmospheric
height.

As an approximation, we solve equation (8) with scat-
tering opacity and total opacity that are precalculated with
this plane-parallel radiation Ðeld. We assume that Jj ^Jjppand replace the scattering opacity with the approximatep

i
J

p
i
Jpp :

p
i
J ^ p

i
Jpp \ /*ji pj Jjpp dj

/*ji Jjpp dj
.

Similarly, we could choose to use in the calculation ofIjppthe total opacity. This would, however, introduce a direc-
tion dependency. As a Ðrst approximation, we eliminate the
direction dependency by setting in the averaging,Ij ^ Jjppand replace withs

i
I s

i
Jpp :

s
i
I ^ s

i
Jpp \ /*ji sj Jjpp dj

/*ji Jjpp dj
. (12)

Hence, the approximate wavelength averaged intensity isI
i
*

deÐned by the transport equation :

LI
i
*

Lr
4 p

i
JppJ

i
* ] i

i
BB

i
[ s

i
JppI

i
* , (13)

where the approximate mean intensity is

J
i
* \ 1

4n
P
)

I
i
* d) .

The ratio between emissivity and opacity gives the source
function

S
i
* \ p

i
JppJ

i
* ] i

i
BB

i
s
i
Jpp

. (14)

The Planck mean absorption opacity in equation (10)
remains unchanged, since the Planck distribution is always
deÐned for a given temperature. Hence, the thermal emiss-
ivity has remained exact. Since equation (13) has thei

i
BB

istandard transport equation format, we get a lambda oper-
ator kernel that is a function of and that acts on thes

i
Jpp

source function S
i
* :

J
i
* \ "(s

i
Jpp)[S

i
*] . (15)

The largest inaccuracies in the approach given above
result from using as a weight function in the averagingJjppof the total opacity (eq. [12]), since the correct weight func-
tion is strongly direction dependent.Ij

3.1.4. Approximate Solution in the Di†usion L imit

The di†usion limit is characterized by small photon mean
free paths (high opacity) compared to the scale of variation
of the source function. In this case, the lambda operator is
local because of the rapid cuto† of the kernel function by
the exponential dependency of the optical path length (eq.
[5]). Hence, This implies by equation (2),Jj^ Sj. Sj ^Bj
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even if scattering is dominating. The solution of the trans-
port equation (eq. [3]) is in this case to Ðrst order (e.g.,
Mihalas 1978) :

Ij \ Bj [ 1
sj

LBj
Lr

.

The wavelength averaged intensity becomes

I
i
\ B

i
[ 1

s
i
R

LB
i

Lr
, (16)

where is the Rosseland group mean opacity deÐned bys
i
R

1
s
i
R

\
P
*ji

1
sj

LBj
Lr

dj
NP

*ji

LBj
Lr

dj .

We want to use a form of the transport equation in both
streaming and di†usion limits such that both limits will be
satisÐed in a global numerical solution. The alternative
would be to split the numerical scheme and compute the
Rosseland Ñux divergence directly by using three-
dimensional gradient operators in di†usive layers and use
the transport equation in the streaming limit in atmospheric
layers. The transport equation that satisÐes equation (16) in
the di†usion limit results from using as the total opacity :s

i
R

1
s
i
R

LI
i
*

Lr
\ S

i
* [ I

i
* , (17)

where we must assure that Again,S
i
* ] B

i
.

J
i
* \ "(s

i
R)[S

i
*] . (18)

For small mean free paths, we have J
i
* ^ S

i
*.

The correct weight used in the source function for the
scattering and total opacities is now the Planck distribution
since the mean intensity approaches the Planck distribution
in the limit. This also gives the correct three-dimensional
variations, which the plane-parallel mean intensity cannot
account for. Hence, equation (14) is rewritten as

S
i
* \ p

i
B J

i
* ] i

i
BB

i
s
i
B

, (19)

where the group mean scattering opacity is given by

p
i
B\ /*ji pj Bj dj

B
i

, (20)

and the Planck mean opacity by

s
i
B\ /*ji sj Bj dj

B
i

. (21)

As this source function satisÐes the requirementJ
i
* ] S

i
*,

It also satisÐes for pure absorption whereS
i
* ] B

i
. S

i
* \ B

iand for pure scattering wherei
i
B\ s

i
B, S

i
* \ J

i
* p

i
B\ s

i
B.

3.1.5. W eighting between Di†usion and Streaming Regimes

The source function for the streaming limit in equation
(14) and for the di†usion limit in equation (19) is combined
into one source function using a weighting function between
the two limits :

S
i
* \

Ap
i
Jpp ] p

i
B

s
i
Jpp ] s

i
B

B
J
i
* ] i

i
BB

i
s
i
Jpp ] s

i
B
4 o

i
J
i
* ] g

i
, (22)

where we have deÐned a group mean scattering albedo o
iand a group mean thermal source The arrows indicateg

i
.

transition to the di†usion limit in optically thick layers. We
use the same weighting function for the group mean opa-
cities used in the lambda operators in equations (15) and
(18) :

s
i
Jpp ] s

i
R 4 s

i
T , (23)

where we have deÐned the combined group mean opacity
The mean intensity for both regimes is given bys

i
T.

J
i
* \ "(s

i
T)[S

i
*] ,

or in terms of the transport equation,

LI
i
*

Lr
\ s

i
T(S

i
* [ I

i
*) . (24)

What remains to deÐne is the weighting function. We treat
the radiation problem as nondi†usive within a group when
the Rosseland photon mean free path is largerl

i
mfp \ 1/s

i
R

than a typical length scale of variation of the group meanl
iPlanck function. This weighting is three dimensional since

the Rosseland group mean opacity varies from grid point to
grid point. We choose the ““ optically thin weight ÏÏ by the
exponential

Wstream\ exp ([l
i
s
i
R) .

For weighting between streaming regime opacities Xstreamand di†usion regime opacities in both source func-Xdiffusetion and transport equation, we use

X \ WstreamXstream ] (1[ Wstream)Xdiffuse , (25)

which in our arrow notation is

X \ Xstream] Xdiffuse .

3.1.6. Consistency in the Monochromatic L imit

We recover the exact monochromatic solution if the
wavelength interval of a group approaches zero. In this
limit, the form of the weighting functions in the opacity
averages plays no role, and the source function in equation
(22) becomes the monochromatic source function in equa-
tion (2). The opacity used in the transfer equation, equation
(23), becomes the monochromatic opacity. The form of
depth weighting plays no role in this case, since the tran-
sition is made between two identical quantities.

3.1.7. Approximate Flux Divergence

The exact wavelength-integrated Ñux divergence is for
each group :

$ Æ F
i
\
P
)

P
*ji

LIj
Lr

dj d)\
P
)

LI
i

Lr
d) . (26)

For the approximate from equation (24), we get the ÑuxI
i
*

divergence

$ Æ F
i
* \

P
)

LI
i
*

Lr
d)\

P
)
s
i
T(S

i
* [ I

i
*)d) . (27)

This becomes in the streaming limit, using equations (14)
and (13),

P
)
s
i
Jpp(S

i
* [ I

i
*)d)\ 4n(i

i
BB

i
[ i

i
Jpp J

i
*) ,

where is the group mean absorptioni
i
Jpp \ s

i
Jpp [ p

i
Jpp

opacity. We note that the approximation lies in the absorp-
tion term and that the thermal emission term isi

i
JppJ

i
* i

i
BB

i
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exact. The approximate Ñux divergence in the di†usion limit
becomes, when using equations (16), (17), and the source
function in equation (19) in the limit S

i
* ] B

i
:

P
)

s
i
R(B

i
[ I

i
*)d)\ [

P
)

L
Lr

1
s
i
R

LB
i

Lr
d) .

The total exact Ñux divergence is obtained by summation
over all groups according to equations (4) and (26) :

$ Æ F \ ;
i

$ Æ F
i
\
P
)

P
0

= LIj
Lr

dj d) ,

and, similarly, we have that the total approximate Ñux
divergence is

$ Æ F* \;
i

$ Æ F
i
* . (28)

3.2. T he Iteration Scheme
3.2.1. Notation DeÐnition

Here, we derive the iteration method to solve for either
the monochromatic radiation or for the radiation in indi-
vidual groups. Both problems have the same form for the
transport equation and, therefore, we will use a general
formalism in this section. The general transport equation is

^ 1
s

LIB
Lr

\ S [ IB , (29)

where s is for groups, and for the monochromatics
i
T sjproblem. IB is the intensity in the two opposite directions

along a given ray. This ray has an arbitrary direction, and r
is the geometrical distance along this ray from an arbitrary
point. I` is chosen to be in the direction of increasing dis-
tance r and I~ in the direction of decreasing r. The source
function S is given by equation (22) for groups and by equa-
tion (2) for the monochromatic problem. In both cases, we
write S in terms of a scattering albedo o, mean intensity J,
and thermal source g :

S \ oJ ] g . (30)

The iterative method uses the bidirectional average inten-
sity as the unknown variable :

p) \ 12(I` ] I~) ,

where ) denotes the direction dependency. The transfer
equations for I` and I~ (eq. [29]) can be recast to the
familiar second-order di†erential equation Ðrst formulated
by Feautrier (1964) :

A
1 [ L2

Lq)2
B
p) \ S . (31)

is the optical path length along the associated ray, andq)the relation to opacity and geometrical distance is

dq) \ s dr .

We deÐne the inverse lambda operator for a single ray as

")~14 1 [ L2
Lq)2

. (32)

Hence, can be written in terms of the lambda operatorp)for a single ray :

p) \ ")[S] .

The explicit form of this operator follows from using the
integrated transport equation (eq. [29]) for I` and I~ :

")[S]\ 12
AP

0

=
S exp ([q)`)dq)`]

P
0

=
S exp ([q)~)dq)~

B
,

(33)

where and are the optical lengths measured alongq)` q)~opposite directions for a given ray. The integrations are
started from the point where is evaluated (wherep) q)`\

Note that can be found in two ways for a givenq)~\ 0). p)source function ; either by solving the di†erential equation
or by integrating over the source function")~1[p)]\ S,

directly, using The mean intensity is given byp) \ ")[S].

J \
P
)
p)

d)
2n

. (34)

Hence, the full lambda operator is formally given by the
relations

J \ "[S]\
P
)
")[S]

d)
2n

. (35)

The integration is done over a half-sphere (spanning the
solid angle 2n). By combining equations (34), (32), and (31)
with equation (30), we get the integrodi†erential equation
for that speciÐes our problem:p)

")~1[p)]\ o
P
)
p)

d)
2n

] g . (36)

Alternatively, we can formulate the problem as an integral
equation in the source function by combining equation (35)
with equation (30) :

S \ o"[S]] g . (37)

We use the integrodi†erential form in the derivation of the
iteration method.

3.2.2. Iterations with Ray Decoupling

With the formalism given above, we are in a position to
derive the iteration method. Let be the current estimatep)nof the unknown at iteration step n. The correspondingp)estimate of the source function is, by using equations (30)
and (34) :

Sn \ o
P
)
p)n

d)
2n

] g . (38)

The corresponding formal solution is given by

p)FS \ ")[Sn] , (39)

and let SFS be given by

SFS\ o
P
)
p)FS

d)
2n

] g , (40)

which is equivalent to SFS \ o"[Sn]] g. Since the solution
S satisÐes equation (37), we have that both SFS and Sn
approach S for a convergent iteration. Hence, we must also
have that SFS] Sn. We therefore deÐne an error in the
source function by

En \ SFS [ Sn . (41)

This error term is used for calculating approximate correc-
tions to the radiation Ðeld, and these corrections approach
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zero when the error term approaches zero. We rewrite the
error by using the inverted version of equation (39) for Sn
and equation (40) for SFS :

En\ o
P
)
p)FS

d)
2n

] g [ ")~1[p)FS] . (42)

The exact correction is added to in thisdp) \ p) [ p)FS p)FSequation, which by equation (36) results in En \ 0. This can
be written as

o
P
)
(p)FS ] dp))

d)
2n

] g [ ")~1[p)FS ] dp)]\ 0 . (43)

Subtraction of equation (42) from equation (43), and using
the fact that is linear since we have assumed that the")~1
opacity s is independent of the radiation Ðeld, yields an
equation for the exact correction dp) :

")~1[dp)][ o
P
)
dp)

d)
2n

\ En . (44)

The angle integral results in a coupled set of second-order
di†erential equations as for the original problem in equa-
tion (36) and is equally difficult to solve. We therefore make
a simpliÐcation in the angle integral, and the solution of the
equation will now deÐne approximate instead of exact cor-
rections. This leads to an iteration series that we must
provide convergence for. The accuracy of the simpliÐed
angle integral determines the convergence rate. The error
term En includes SFS, which is calculated using the full angle
integral in equation (40), such that Sn will converge to the
correct solution.

We assume that the corrections in an arbitrary direc-dpution u in a subset of ray directions are comparable to*)
cthe angle averaged correction :

dpu D
P
)
dp)

d)
2n

\ dJ ; u ½ *)
c

. (45)

Since any direction gives approximately the sameu ½ *)
ccorrection by this assumption, it is only necessary to solve

for the approximate correction without coupling to other
rays in The equation for the corrections is deÐned by*)

c
.

inserting equation (45) in equation (44) :

"u~1[dpu*][ o dpu* 4 En . (46)

This approach is exact in the special case of optically thick
media, for which any direction gives the same perturbation
because of isotropy. In optically thin three-dimensional
media, the solutions from equation (46) will be slightly dif-
ferent for di†erent u. We therefore solve the equation on
several rays in and the angle average of these pertur-*)

c
,

bations gives a more accurate estimate of the perturbation
in mean intensity :

dJ* \ 1
*)

c

P
*)c

dpu* du^
P
)
dp)

d)
2n

\ dJ . (47)

For the special case of planetary or stellar atmospheres,
which have roughly a plane-parallel character, we could use
a one-point angular quadrature in zenith angle (Eddington
approximation for plane-parallel atmospheres) and choose
a set of points in azimuth angle to deÐne This corre-*)

c
.

sponds to a bidirectional cone symmetrical about the verti-
cal line.

The approximate perturbation in mean intensity dJ* is
now used to Ðnd the next estimate of the source function
Sn`1. Equation (43) for the exact correction can be rewritten
as

SFS ] o dJ [ S \ 0 .

Hence, the next estimate Sn`1 of S becomes

Sn`1\ SFS ] o dJ* \ SFS ] dS* . (48)

The iteration steps can be summarized as follows (using the
left-hand side results on the right-hand side in the following
line) :

SFS \ o"[Sn]] g
En \ SFS [ Sn

"u~1[dpu*][ o dpu* \ En

dJ* \ 1
*)

c

P
*)c

dpu* du

Sn`1\ SFS ] o dJ* .

3.3. Comparison with Other T hree-Dimensional
Iterative Methods

It is now instructive to discuss other methods and to
compare them with the present method. It will then become
clear that the present method is favorable for the coherent
isotropic scattering problem.

3.3.1. CannonÏs AQPT Method

The Angle Quadrature Perturbation Technique (AQPT)
of Cannon (1973a) is related to the present method in that
the angle integral is approximated and that the integrodif-
ferential approach is used as a basis. The angle integral for
the corrections is represented by a quadrature sum with
fewer angles (lower order quadrature) than the more accu-
rate quadrature sum used for the formal solution of the
mean intensity needed in the error term. All rays in the
lower order quadrature sum are used in the correction pro-
cedure, and this corresponds to a set of coupled di†erential
equations. This is computationally demanding in three-
dimensions since it leads to a matrix equation with a
complex matrix structure.

CannonÏs method results if, instead of the one-ray
approximation in equation (45), we use an approximate
angle integral with few quadrature points This replaces)

i
.

the angle integral2 in equation (44) :

")i
~1[dp)*i

][ o ;
i

dp)*i
w

i
\ En . (49)

Here, are the quadrature weights. All perturbationsw
i

dp)*iare found simultaneously instead of Ðnding them suc-
cessively, ray by ray. The perturbation in mean intensity is
given by

dJ* \;
i

dp)*i
w

i
. (50)

As a special case of CannonÏs method, we can use only
one ray in the approximate angle integral that gives the)0one-ray approximation we have used. However, this corre-

2 The symbols of continuous integrals means that they are implemented
numerically as high-order quadrature sums. The approximate angle inte-
gral is written explicitly as a quadrature sum to distinguish it from the
more accurate angle integral.
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sponds to by equation (50) and is not the samedJ* \ dp)*0as the present method, since we average over several solu-
tions of the correction equation (eq. [46]) to get the correc-
tions in mean intensity.

3.3.2. L ocal AL I Method

Equation (37) for the volume integral form of the problem
has been solved by iterations using the well-known Acceler-
ated Lambda Iteration technique (ALI) (e.g., Hubeny 1992).
For three-dimensional problems, it is most convenient to
use the diagonal (local) elements of the kernel matrix as"

iithe approximate operator since this involves only scalar
operations, grid point by grid point, for the corrections to
the source function. This scheme is, in our case, identical to
Jacobi iterations (Jacobi 1845). In practice, one uses the
approximate diagonal elements (e.g., Olson, Auer, &"

ii
*

Buchler 1986). The correction to the source function is now

dS* \ En

1 [ o"
ii
*

.

The updated value is Sn`1\ dS* ] Sn.

3.3.3. Discussion of Methods

The ALI method is characterized by approximations in
spatial coupling and accurate angle coupling while
CannonÏs and the present method are characterized by
approximations in angle coupling and accurate spatial
coupling.

The ALI method has a much slower convergence rate
than the present method (as shown by Botnen 1997) since it
does not provide global coupling along rays. The time spent
on formal solutions for the error term will therefore be
larger because there are more iteration steps. CannonÏs
method involves coupled di†erential equations through the
approximate angle integral and results in intractable matrix
equations in practice when the problem is three dimension-
al.

The correction step in the current method provides a
faster convergence rate than ALI while avoiding the
coupled rays as in CannonsÏs method. Equation (46) for the
corrections can be written as

W [dpu*]4 ("u~1 [ o)[dpu*]\ En . (51)

Hence, W can be written as a matrix by subtracting o from
the diagonal elements in the standard Feautrier matrix. The
Feautrier matrix is tridiagonal, and this results from using
Ðnite di†erences for the second derivative in the oper-")~1
ator (eq. [32]). The matrix form of W is therefore also tri-
diagonal and the solution of requires only onW [dpu*]\ En
the order of D arithmetic operations, where D is the number
of points along a ray. Hence, the correction procedure is
relatively cheap computationally.

4. APPLICATION TO SOLAR SIMULATIONS

We have extended the solar convection model of Nor-
dlund & Stein (1990) to include chromospheric layers. Radi-
ation was previously treated in LTE by using averaged
Planck functions in a few wavelength groups as source func-
tions, according to the procedure explained in Nordlund
(1982). The new model extends to 1.5 Mm above the granu-
lar layer (as compared with 500 km in the previous model).
The lower boundary is located 1.5 Mm below the top of the
convection zone. This gives a total vertical extension of 3
Mm. We solve the radiation scattering problem from the

top of the domain down to a layer within the convective
part of the simulation. This zone covers about 10 orders of
magnitude in opacity.

For each time step and wavelength group, we start the
iteration with the solution from the previous time step.
After convergence of all groups, we calculate the radiative
Ñux divergence and add that to the gas-energy equation.
Hydrodynamic results from these simulations are treated
elsewhere (Skartlien 1998 ; Skartlien et al. 2000).

In this section, we explain the numerical implementation,
discuss the performance of the iteration scheme, and the
treatment of opacities.

4.1. Numerical Implementation
4.1.1. Radiation Boundary Conditions

We use incoming intensities at the upper and lower
boundaries of the domain as the two boundary conditions
in FeautrierÏs scheme. We assume a constant source func-
tion above the upper boundary, and the incoming intensity
is calculated accordingly. The incoming intensity at the
lower boundary is calculated using the di†usion approx-
imation as in equation (16). The horizontal boundaries are
periodic, such that outgoing, slanted rays at one sidewall
enter the domain at the opposite sidewall. This makes it
possible to always use rays that extend from the top to the
bottom boundaries and to use only these boundary condi-
tions.

4.1.2. Ray Discretization

We use Cartesian coordinates (orthogonal coordinate
axes), which is suitable for a sufficiently small domain where
the solar/stellar curvature can be neglected. The long char-
acteristics method is used for the radiation, with sampling
only on horizontal planes (Nordlund 1985), such that every
ray consists of the depth points. This results in relativelyN

zsimple algorithms suitable for parallel processing, since
there are no computational di†erences for varying ray
direction.

It is noted that the short characteristics (SC) method
(Kunasz & Auer 1988) has better resolution along slanted
rays since vertical planes also are sampled. We cannot use
the SC method within the present ray-based correction pro-
cedure.

For the high-resolution angle integral over (for SFS inp)FSthe error term En), we use Gaussian quadrature integration
over zenith angle and trapezoidal integration with even
spacing over azimuthal angle. This choice corresponds to
rays along a set of bidirectional cones centered on the verti-
cal line. All rays in the cone with smallest zenith angle
deÐnes our subset of angles in which we solve the correction
equation. This choice gives a faster convergence rate than
using rays with larger angles from the vertical line.

4.1.3. Interpolation between Rays and Cartesian Grid

We have parallel rays passing through eachN
x
] N

yhorizontal plane for each ray direction. and are the(N
x

N
ynumber of grid points in the horizontal directions). These

rays do not necessarily pass through grid points, and we
must therefore interpolate values from grid points onto
rays. We also need to do the reverse interpolation from rays
to grid. We use a local spline interpolation procedure as in
Nordlund (1982).

These interpolations are not reversible, as opposed to the
Fourier interpolations used in Nordlund (1985) and Kisel-
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man & Nordlund (1995). The aliased components in the
discrete Fourier transform are sufficient to introduce an
instability in the iteration procedure. This could be the
reason why Kiselman & Nordlund (1995) applied a stabili-
zing ““ extra ÏÏ lambda iteration in their scheme. The high
spatial frequencies are successively ampliÐed if a lowpass
(de-aliasing) Ðlter is not applied.

We have therefore used a more robust spline inter-
polation. This need not be reversible as long as we avoid
interpolating the same quantity back and forth between the
grid and rays during the iteration. This situation arises in
the deepest layers where the speciÐc intensity is equal to the
source function. The next estimate of the source function
should in this case be equal to the previous estimate and the
error term would be zero. However, this is not exactly true
for nonreversible interpolations. We solve this problem by
solving for the di†erence in optically thickq)FS \ p)FS [ Sn
layers. This approach ensures a zero error term where qFS
vanishes, independently from the choice of interpolation
scheme. The di†erential equation for qFS is obtained by
taking the second derivative in optical path length ofq)equation (31) :

")~1[q)FS]\ L2Sn

Lq)2
. (52)

4.1.4. Implementation of Iterations

Let ““ g ÏÏ be grid variables and ““ r ÏÏ ray variables, and let
arrows denote interpolations between grid and rays. We
suppress the angular index ) of pFS and qFS for clarity. We
use logarithmic interpolation for quantities that are always
positive (such as intensity) to avoid unphysical negative
interpolants.

For a given we calculate the error by the followingS
g
n, E

g
n

procedure :

log (s
g
)] log (s

r
)

log (S
g
n)] log (S

r
n) .

After the solution of equation (31) for optically thin layers :

log (p
g
FS)^ log (p

r
FS) .

After the solution of equation (52) in optically thick layers :

q
g
FS ^ q

r
FS .

We calculate the formal solution by running through allS
g
FS

ray directions by repeated usage of the last four equations.
For optically thick layers :

S
g
FS\ o

g

A
;
)

q
g
FS w) ] S

g
n
B

] g
g

.

For optically thin layers :

S
g
FS \ o

g
;
)

p
g
FSw) ] g

g
.

The error is now calculated (eq. [41]) as

E
g
n \ S

g
FS [ S

g
n .

We can now calculate the correction to the source func-
tion These interpolations are done for the correctordS

g
*.

step

log (s
g
)] log (s

r
)

E
g
n ] E

r
n .

We have that where is the scattering albedov
g
\ 1 [ o

g
, o

gand the destruction probability. Since we mustv
g

v
g
½ [0,1],

ensure that the same is true for the interpolant. To do this,
we use these transformations :

a
g
\ v

g
1 [ v

g
log (a

g
) ] log (a

r
)

v
r
\ a

r
1 ] a

r
½ [0, 1] .

The corrections are now calculated from equation (46).dp
r
*

Then we interpolate these corrections back to the grid :

dp
g
* ^ dp

r
* .

is calculated by using the last six equations whiledS
g
*

running through the subset of angles. The quadrature sum
over the subset of angles gives

dS
g
* \ o

g
;
u

dp
g
*wu .

are the angle quadrature weights. The updated sourcewufunction is by equation (48) :

S
g
n`1 \ S

g
FS ] dS

g
* .

We can now go back to the calculation of the error term for
the next iteration.

After convergence of this scheme, we calculate the Ñux
divergence contributions along each ray and interpolate
these back to the grid :

G*q)
*r

(S [ p))
H
g
^
G*q)

*r
(S [ p))

H
r
.

The Ñux divergence per group is obtained by the angle
integration in equation (27). The total Ñux divergence is
obtained by adding over all groups according to equation
(28) :

$ Æ F* \;
i

;
)

G*q)
*r

(S [ p))
H
g
w) .

4.2. Performance in Simulations
4.2.1. CPU T ime as Function of Resolution

The CPU time spent on spline interpolations per ray
direction scales linearly with This is alsoNgrid\ N

x
N

y
N

z
.

the case for the formal solutions along rays, since therep)FSare rays per direction, and the solution of per rayN
x
N

y
p)FSscales as The CPU time for the formal solution SFS isN

z
.

therefore

TFS \ aNrays Ngrid ,

where a is a constant. denotes the number of rayNraysdirections. Here, we have not taken into account external
arithmetical operations since they consume a negligible
amount of time in comparison. Similarly, the time spent on
corrections dS* is

Tcorr \ b(aNrays)Ngrid ,

where b ^ a is a constant, and anda \Nsubset/Nrays \ 1,
where is the number of rays in the correction pro-Nsubset
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cedure. a \ 1/3 when using one set of azimuthal angles from
three sets deÐned by a three-point Gaussian quadrature in
zenith angle. The CPU-time for one iteration step in one
wavelength group is Hence, the total CPUTit\TFS ] Tcorr.time for solving for the radiation also scales linearly with
the number of ray directions and grid points : Ttot\where is the total number ofTitNiterD Nrays NgridNiter, Niteriterations needed for all groups. Since b ^ a and a \ 1,
most of the CPU time is used on formal solutions.

4.2.2. Parallel Processing

We have used MPI (Message Passing Interface) on a
CRAY ORIGIN 2000 machine to compute formal solutions

and corrections for di†erent angles in parallel (forp)FS dp)*angle parallelization in combination with the SC method,
see Botnen 1997). For each iteration, the data needed for
di†erent angles are distributed to the set of microprocessors
we use. The resulting ray data are thereafter gathered and
averaged (angle integrals) in one microprocessor. This
scheme is repeated until convergence of the iteration.

In principle, the computational time (not CPU time) will
be reduced by a factor and for formal solu-1/Nrays 1/Nsubsettions and corrections, respectively, if we use andNraysmicroprocessors for formal solutions and correc-Nsubsettions. In practice, the time reduction is less because of the
transfer of data between microprocessors ; more micro-
processors means more time for exchanging data. In some
cases, we therefore calculate, in succession, results for more
than one ray direction per microprocessor. In these cases,
the number of microprocessors is less than andNrays Nsubset.A further speed-up would result if we parallelized over
groups in addition to ray directions.

4.2.3. Iteration Convergence

At each time step in a simulation, and for each group, the
source function is iterated to convergence. The initial esti-
mate for the source function Sn/0 is taken as the converged
source function from the previous time step. Orthomin
acceleration is used (Vinsome 1976) to improve the con-
vergence rate of the iteration. It is found that Orthomin
acceleration (of order 2) reduces the number of iteration
steps by a factor of about 2.

The iteration is terminated when the maximum relative
change

Max
C o Sn [ Sn~1 o

Sn~1
D

is smaller than a speciÐed limit, typically 10~3 (n is iteration
number). This corresponds to typically 2, 5, 10, and 15 iter-
ations for groups 1, 2, 3, and 4, respectively. Increasing
group number corresponds to smaller destruction probabil-
ities in the atmosphere (see Fig. 2) ; hence, more iterations
are needed.

Figure 1 shows the maximum relative error or deviation
from the converged source function S=,

Max
C o Sn [ S=o

S=
D

,

as function of iteration number. We have chosen an arbi-
trary time step in the simulation and use the converged
source function from the previous time step as an initial
estimate. In the Ðgure, we see that the typical number of
iterations given above (corresponding to 10~3 relative
changes) correspond to errors of about 5 ] 10~3. Note that

FIG. 1.ÈSource function convergence for the iteration method, at an
arbitrary time step in a solar simulation. Maximum relative errors from the
converged source functions are plotted as a function of iteration number.
The initial source functions are taken from the previous time step. A rela-
tive error of 5 ] 10~3 is marked by the line. This corresponds to 2, 5, 10,
and 17 iterations. These numbers are typical for the amount of iterations
needed in simulations, in which we choose a convergence limit based on
relative changes as the source function (typically 10~3) between iterations.
More iterations are needed for increasing group number, since the destruc-
tion probability (in the atmosphere) is smaller for increasing group
number. The convergence curves in this log-plot are roughly linear, corre-
sponding to an exponentially decreasing error with iteration number.

we choose a limit on the maximum relative change as a
convergence criterion in simulations since the fully con-
verged source function is not calculated. Figure 1 shows
that the errors decrease roughly exponentially with iter-
ation number.

Errors at iteration number 0 show the maximum devi-
ations between the converged source functions at current
and previous time steps. We see that these can be as large as
0.3È0.4 (group 4), even if the intervals between time steps are
only on the order of 0.1 s of solar time. Iteration of the
source function at every time step is therefore needed.

4.3. Calculation of Group Mean Opacities
4.3.1. Monochromatic Continuum and L ine Opacities

Continuum opacities are calculated using the package of
Gustafsson (1973). Absorption opacities are calculatedijcfor bound-free and free-free transitions of H~ and H I, for
bound-free transitions of He I, C I, Mg I, Al I,H2~, H2, H2`,
and Si I. Scattering opacities are calculated for Rayleighpjcand electron scattering. Electrons come from ionized stages
of the most abundant elements H, He, C, N, O, Ne, Na, Mg,
Al, Si, S, K, Ca, Cr, Fe, and Ni.

Line opacities (sum of absorption opacities andsjl ijlscattering opacities for CO and CN molecules and forpjl )the strongest lines of the most abundant elements are taken
from opacity distribution functions by Gustafsson et. al.
(1975). The opacity spectrum consists of 368 wavelength
points from 153.3 nm in the ultraviolet to 12.43 km in the
infrared. Line opacities from Fe in ultraviolet aresjlaccounted for by reÐning the empirical Ðt of Magain (1983).
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4.3.2. L ine Destruction Probability

The contributions to line opacity from absorption are
calculated using the approximation of Van Regemorter
(1962). The destruction probability in lines is in generalvjldependent on several electronic transitions k on the same
wavelength with individual destruction probabilities vjl,k :

vjl \ ;
k

sjl,k vjl,k
sjl

\ijl
sjl

, (53)

where

sjl \;
k

sjl,k

is the total line opacity, and the line opacity at a tran-sjl,ksition k. Hence, this weighting procedure favors those tran-
sitions with the largest probability to interact with photons.
The destruction probability in transition k is given by the
probability for collisional deexcitation from the upper level
j to the lower level i :

vjl,k \ 1
(A

ji
/C

ji
)] 1

.

[s~1] is the Einstein coefficient for spontaneous radi-A
jiative deexcitation, and [s~1] is the collisional deexcita-C

jition parameter.
We use Van RegemorterÏs approximation for thatC

ji
/A

jiis independent of the speciÐc transition :

C
ji

A
ji
\ 20.6j3n

e
T ~1@2P

N,I
A*E
kT
B

, (54)

where j [cm] is the photon wavelength, [cm~3] electronn
enumber density, T [K] temperature, *E [ergs] the photon

energy, k [ergs K~1 ] the Boltzmann constant. The function
P is given either for positive ions or neutrals.

We use the estimate for line destruction probability
to calculate line-absorption opacities fromvjl (ne

, T ) ijlequation (53). Line opacities are taken from opacity dis-sjltribution functions and from an approximation of the
opacity in the ultraviolet caused by numerous iron lines
(Magain 1983).

5. TEST OF THE METHODS

5.1. Monochromatic versus Approximate Solutions
We compare the total radiative heating (negative of/

i
*

Ñux divergence) in each group with the exact solutions /
iobtained from wavelength integration of monochromatic

solutions. The monochromatic solutions are obtained from
solving a three-dimensional scattering problem at each of
the 368 wavelength points we use. For this test, we have
used a single snapshot from the three-dimensional
atmosphere-convection simulation, with the current radi-
ation method included in the energy equation.

We use four groups, denoted by 1, 2, 3, and 4, with group
1 as the continuum group and group 4 for the strongest
spectral lines. Intermediate groups correspond to weaker
lines. Optical depths unity, corresponding to the group
mean opacities, are located at increasing height for increas-
ing group number because of larger average opacity for the
spectral line groups. Group 1 transports the most radiative
Ñux, with maximum Ñux divergence in the photosphere or
cooling layer of the convection zone. This group includes
the largest number of wavelength points.

The temperature structure of the atmosphere and the
group mean photon destruction probabilities are displayed
in Figure 2. The cooling layer of the convection zone is
located around the height of 0.0 Mm, where the radiative
cooling and mean temperature gradient are largest. The
group mean destruction probability is given by 1[ o

i
,

where the group mean scattering albedo is given in equa-o
ition (22).

As the line contribution to the group mean opacity
increases (increasing group number), scattering becomes
more important, and photons scatter rather than being
coupled to the gas via collisions. For a given di†erence
between local temperature and radiation temperature, a
smaller destruction probability means a smaller amplitude
of the radiative Ñux divergence as compared to no scat-
tering. The scattering contribution is present also in the Ðrst
few hundred kilometers into the convection zone (below 0.0
Mm), but it dominates in atmospheric layers above 0.0 Mm
for groups 2, 3, and 4.

Horizontal averages of the exact and the approximate
radiative heating for the four groups are compared in
Figure 3. Here we have used the full approximation given
by equations (22), (23), and (24) in the calculation of the

FIG. 2.ÈUpper panel : Mean, maximum, and minimum temperature
(solid lines) and standard deviation (dash-dotted lines) in horizontal planes
for the test snapshot. L ower panels : Mean (thick lines), maximum and
minimum (thin lines) group mean destruction probabilities in horizontal
planes. As the line contribution increases (increasing group number), scat-
tering becomes more important, and photons scatter rather than couple to
the gas by collisions. The cooling layer of the convection zone is located
around the height of 0.0 Mm, where the radiative cooling is largest.
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FIG. 3.ÈUpper panels : Horizontally averaged radiative heating per
volume unit shown in a bilogarithmic plot. The units are arbitrary. Thick
lines are the exact group solutions, while the thin lines are the approximate
group solutions. The vertical line segments in the uppermost panel show
the heights where the average optical depth per group is unity, as measured
along the vertical line. L ower panel : Horizontally averaged amplitudes of
radiative heating (average absolute value) relative to the amplitude of the
exact total heating. Thick lines are the exact amplitude ratios, while the
thin lines are ratios from the approximate group solutions.

approximate solution. The horizontal averages (thin lines)
coincide very well with the horizontal averages of the exact
solutions (thick lines). The upper panels show cooling below
0.0 Mm in all groups, and heating in groups 2, 3, and 4
immediately above 0.0 Mm.

The lower panel shows the amplitude of the approximate
and exact Ñux divergence (horizontal average of the abso-
lute value) relative to the amplitude of the total exact Ñux
divergence, i.e., andS o/

i
* o T/S o/tot o T S o/

i
o T/S o/tot o T(brackets denote horizontal average). We see that the exact

relative amplitudes (thick lines) coincides very well with the
approximate values (thin lines).

A sample of the spatial structure is displayed in Figure 4,
where we have shown the exact heating per mass unit in all
groups as gray-scale images in a vertical slice. Black con-
tours mark locations of zero heating, and lighter shades of
gray means positive heating. Gas in layers immediately
above the cooling layer is heated in all groups in expanding
Ñow above granules. Granules are seen as curved horizontal
structures. As up-Ñowing gas expands and cools, the tem-
perature falls below the radiation temperature, and the gas
is radiatively heated. Note also heating of the cool region

FIG. 4.ÈExact group radiative heating per mass unit in vertical slices
through the simulation. Full drawn black contours show the level of zero
heating. Heating is found at lighter shades of gray, and cooling at darker
shades. Dash-dotted black contours show the zero level of the approximate
group heating and coincide well with the zero level of the exact heating.
White curves are the horizontal averages of the radiative heating per mass
unit (normalized to Ðt the plotting window). Black vertical lines mark the
zero level for these curves, and positive values are to the right of the lines.
L ower panel : Temperature in the same vertical slice. Note the cooling in
the granular layer at the height 0.0 Mm, and heating immediately above in
all groups, and also heating of the cool region below 3000 K in the
chromosphere.

below 3000 K in the chromosphere as radiation energy
from below is converted to thermal energy via collisions.

The dash-dotted black contours show the zero level for
the approximate heating and coincide well with the zero
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level for the exact heating. White curves are horizontal aver-
ages per mass unit (normalized to Ðt the plotting window).
The gray-scale plots show that the heating (cooling) contri-
butions can cancel a large part of the cooling (heating) con-
tributions in the horizontal average at a speciÐc depth. This
is clearly the case for the curved granular surfaces.

The above comparisons of horizontally averaged heating
do not reveal local deviations between approximate and
exact solutions since, e.g., excessive heating at a speciÐc
height and horizontal region can be canceled by excessive
cooling in other regions at the same height. We have there-
fore computed absolute di†erences between approximate
and exact solutions at each grid point and thereafter calcu-
lated the horizontal average of these di†erences. The
relative deviation is found by dividing by the magnitude
of the exact radiative heating at the same height :/

iS o/
i
* [ /

i
o T/S o/

i
o T.

The upper panel in Figure 5 shows typically 1%È30%
deviations in atmospheric layers, with a peak of 100% devi-
ation in group 3 at 0.35 Mm. The smallest deviations, less
than 10%, are found for group 1, which carries the most
energy. The total radiative heating is also seen to deviate
with less than 10% from exact value because of the domin-
ance of group 1 at all heights. This is the Ñux-divergence
accuracy we can achieve in three-dimensional simulations
with the current method.

The lower panel in Figure 5 shows the fraction of grid
points that have higher radiative heating than the exact
solution. A fraction of 0.5 corresponds to an approximate
solution that Ñuctuates on either side of the exact solution.
We see that the approximate solutions have lower values
than the exact solutions at 0.3 Mm (immediately above the

FIG. 5.ÈHorizontally averaged deviations between approximate and
exact group radiative heating. Upper panel : Deviations are typically in the
range 1%È30%. L ower panel : Fraction of grid points in horizontal planes
for which the approximate solution is larger than the exact solution.

cooling layer). In the chromosphere, group 1 and 2 have
lower values, and group 3 has higher values than the exact
solution. Group 4 has approximately the correct values.
The total radiative heating is lower than the exact value
owing to the domination of group 1. By considering the
deviation above, we conclude that the total heating is less
than 10% below the exact heating in atmospheric layers.

5.2. Comparison with a Previous L T E Method
Here we compare the new method for scattering with the

previous LTE method used in the convection simulations of
Nordlund and Stein.

5.2.1. NordlundÏs L T E Scheme

We review this method here ; additional information can
be found in Nordlund (1982) and Nordlund & Dravins
(1990). Nordlund treated the source function in LTE for all
groups, and used a scaled opacity for the transportS

i
* \B

i
,

equation, where 10i~1 is the typical ratios
i
T \ s

i/1T 10i~1,
between monochromatic opacities within group i and the
opacity in group 1 at unity optical depth. The binning of
wavelengths into groups satisfying these ratios at unity
optical depth was performed in the horizontally averaged
model. Only and were stored in the lookup table,s

i/1T B
iand the Ñux divergence was calculated as in equation (27)

with S
i
* \ B

i
.

Nordlund & Dravins (1990) calculated as a cor-s
i/1T

rected standard opacity (Rosseland opacity integrated over
continuum opacities only) to include the inÑuence from the
depth variation of weak iron lines in optically thin layers :

s
i/1T \ s

R
c (3D)Xcorr .

is here the standard opacity, labeled to indicate as
R
c (3D)

three-dimensional structure. was calculated as a func-Xcorrtion of depth in the horizontally averaged model and
weighted between di†usion and streaming regimes :

Xcorr \
i
i/1Jpp

s
R
c

exp ([2q
R
c ) ] s

R
s
R
c

[1[ exp ([2q
R
c )] .

includes line plus continuum absorption opacities. Thei
i/1Jpp

line opacities from the ODF were here treated as pure
absorption opacities. is the standard opacity, is thes

R
c q

R
c

standard optical depth, and the full Rosseland opacity,s
Rall quantities for the horizontally averaged model.

The Ñux divergence integral (eq. [27]) for group 1 takes
this form in the streaming regime :

s
R
c (3D)

i
i/1Jpp

s
R
c

(B
i/1 [ J

i/1* ) ,

where

s
R
c (3D)

i
i/1Jpp

s
R
c

is an approximation to the three-dimensional absorption
opacity. This approach approximately excludes the scat-
tering contribution in the Ñux divergence integral. Note also
that is still computed in LTE in this scheme, withoutJ

i/1*
iterations.

Details in absorption opacity were not accounted for in
groups of numbers higher than 1. Scaling of the opacity in
group 1 was assumed to be a sufficient approximation for



478 SKARTLIEN Vol. 536

FIG. 6.ÈHorizontally averaged group mean intensities J and source
functions S from the test snapshot. The units are arbitrary, but the scaling
is the same for the four Ðrst Ðgures. The mean intensities from the new
method (new) are closer to the source functions than for the previous LTE
method (old). The di†erent values of mean intensities are caused mainly by
di†erent source functions, but there is also some inÑuence from di†ering
heights where optical depths are unity. Diamonds and triangles show the
heights for where the optical depth is unity. L ower panel : Horizontal aver-
ages of group mean opacities (arbitrary units). Higher values correspond to
higher group numbers. Below 0.0 Mm, all groups have opacities equal to
the group mean Rosseland opacity for the new method. Note the scaling by
powers of 10 for the ““ old ÏÏ opacity.

these opacities. In the new method, we calculate all group
mean opacities explicitly, and we also include line scat-
tering.

5.2.2. Di†erences in Mean Intensity and Flux Divergence

Horizontal averages of mean intensities and source func-
tions are compared in Figure 6 for the same snapshot that
we have used previously (Fig. 2). We have used the same set
of wavelengths per group for LTE and scattering results.

The mean intensities from the new method are closer to
the source functions than for the LTE method because of
the scattering contribution in the new method. Pure scat-

FIG. 7.ÈHorizontal averages of radiative heating per mass unit. The
units are arbitrary, and the scaling is the same for all Ðgures. The ampli-
tude of the Ñux divergence for the previous LTE method (old) is much
larger above 0.3 Mm than for the current method. This e†ect is caused
mainly by the larger di†erences between the source function and the mean
intensity. Around 0.0 Mm, the new method produces larger amplitudes in
the sense that hot regions are cooled more and cooler regions are heated
more. L ower panel : Sum of all groups. The main di†erence above 1.0 Mm
comes from the contribution in group 4.

tering would imply that The values of the meanJ
i
* \S

i
*.

intensities are also di†ering, mainly because of di†erences in
the source function, and partially because of the di†erent
heights for which the optical depths are unity.

Diamonds and triangles show the heights for where the
horizontally averaged optical depth is unity, for previousq

iand current methods, respectively. The mean intensities in
optically thin regions are approximately SJ

i
*T ^ 12SS

i
*T

The group mean opacities that determines the(q
i
\ 1).

optical depths are seen in the bottom panel of Figure 6. The
new opacities are higher than the old opacities above 0.3
Mm, except in group 4, where the old opacity has been
scaled to higher values over most of the height range. The
reason for a lower opacity in group 1 for the LTE method is
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that scattering contributions to the opacity are excluded by
the factor.XcorrRadiative heating per mass unit is compared in Figure 7.
The heating amplitudes for the LTE method is much larger
above 0.3 Mm than for the current method. The excessive
cooling above 1.0 Mm is caused by the temperature pertur-
bation seen in Figure 2. This e†ect is caused mainly by the
larger di†erence between the source function and mean
intensity. This larger di†erence is not compensated by the
smaller LTE-opacities, such that the amplitudes in heating
(cooling) become larger. We note that increased Ñux diver-
gence amplitudes implies shorter radiative damping time of
the waves that cause the temperature perturbations.

In the cooling layer around 0.0 Mm, the case is reversed.
The new method produces larger amplitudes in the sense
that hot regions are cooled more and cooler regions are
heated more. This is because the mean intensities are
smoother with scattering than without, hence the di†er-
ences between local temperature and radiation temperature
becomes larger. We should therefore expect smoother tem-
perature gradients in the granular layer. Note that this e†ect
occurs below optical depth unity for groups 2, 3, and 4, i.e.,
in relatively optically thick layers.

6. SUMMARY

We have developed numerical methods for an approx-
imate solution of the radiative Ñux divergence in three-
dimensional solar/stellar atmosphere simulations.
Approximate solutions are obviously necessary in order to
reduce the computational costs associated with the time-
dependent stellar atmosphere problem, which, in general,
involves full NLTE coupling between atomic species. Solar
radiation hydrodynamic simulations in three dimensions
and two dimensions previously have used strict LTE calcu-
lations (e.g., Nordlund 1982 ; Ste†en & Muchmore 1988 ;
Steiner et al. 1998), which works well in the deep photo-
sphere. This work is a step in the direction of relaxing this
standard approximation by including scattered radiation.

To make the problem tractable, we have made three fun-
damental approximations : (1) opacities are still calculated
in LTE, (2) coherent and isotropic photon scattering is
employed in the source function, and (3) group mean opa-
cities (e.g., Mihalas & Mihalas 1984) substitute for the
monochromatic opacity spectrum. This leads to two prob-
lems : the deÐnition of the group mean opacities and the
solution of the scattering problems in each group.

Group mean scattering, absorption, and total opacities
are calculated by a wavelength integration of the transport
equation. The opacities have di†erent deÐnitions for opti-
cally thin and thick layers. In optically thin layers, we use an
approximate radiation Ðeld (in the solar case, an estimate of
the horizontally averaged radiation Ðeld) as a weighting
function, except for the group mean absorption opacity, for
which we use the exact Planck average. In optically thick
layers, we use Planck averages, except for the total opacity.
Here we use Rosseland opacities such that the di†usion
solution of the transport equation is satisÐed. The group

mean source function is, by the usual deÐnition, the ratio
between emissivity and total opacity. This source function
contains an approximate scattering term and an exact con-
tribution from thermal emissivity.

The three-dimensional scattering problems are solved by
iteration using a new method based on a one-ray approx-
imation in the angle integral for the mean intensity. The
equations to be iterated are tridiagonal matrix equations,
one for each ray. For this coherent problem, the method is
faster in terms of computer time than the local ALI method
(Cannon 1973b ; Olson et al. 1986 ; Hubeny 1992) and
CannonÏs AQPT method (Cannon 1973a).

We have tested the methods in solar convection-
atmosphere simulations (Skartlien 1998 ; Skartlien et al.
2000), and we need, for each time step, typically 2, 5, 10, and
15 iterations for the four groups we have used to reach an
accuracy of about 5] 10~3 in the source functions. The
CPU time used for solving for the radiation scales linearly
with the number of angles, grid points, and wavelength
groups. Even with approximate treatment of radiation, the
CPU time used on hydrodynamics is only marginal com-
pared with that used for the radiation calculations.

We have compared exact wavelength-integrated mono-
chromatic solutions with the corresponding approximate
solutions. We Ðnd that the total Ñux divergence obtained
from groups deviates less than 10% from the exact solution,
with maximum deviation in the upper photosphere. Indi-
vidual groups that transport less energy deviate typically
30% in atmospheric layers. A factor of typically 100 can be
saved in computer time as compared to the monochromatic
solution, if the less accurate solution is accepted.

We have compared NordlundÏs LTE method (Nordlund
1982 ; Nordlund & Dravins 1990), which has been used pre-
viously in solar and stellar convection simulations, with the
current scattering method. The LTE method gives larger
amplitudes of radiative heating/cooling in upper atmo-
spheric layers, given the same temperature perturbations.
This is caused mainly by the larger di†erences between the
source function (Planck function in LTE) and mean inten-
sity. Chromospheric waves are therefore damped more effi-
ciently in LTE, and wave amplitudes are smaller than with
radiation scattering. In deeper, optically thick layers, as in
the upper part of the convection zone, the scattering solu-
tion produces a spatially smoother mean intensity than the
Planck distribution, such that temperature Ñuctuations are
smoothed more efficiently than in LTE.
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